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Abstract

In a subdivided population or metapopulation, the overall population growth rate
is the v'eigltted at'erage of the per capita population growth rate, R(N), in each
subpopuiation. Population densities in different subpopulations rvil l  not be
identical at ali t imes. Assuming negative density dependence in R(N), the
variance between subpopulations often reduce the expected population growth rate
for the metapopulation overall, relative to that of a comparable continuous
population. The range of situations in which this is true is explored and found to
be quite l iberal. The distinction betu,een population size and population density,
and the shape of the function relating population growth rate (or per capita growth
rate) and population density (or population size), become important in spatially
structured populations. The effect has implications for how we interpret and
compare empirical data related to population growth rates of different populations,
since this u,ill depend on the patchiness of the landscape/habitat and the spatial
distribution and dispersal abil i t ies of the organism. It also has management
implications for populations in patchy landscapes.
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Introduction

Populations are spatially distributed in ways ranging from isolation in different habitat

patches to continuous and panmictic populations uniformly distributed across the landscape.

Landscapes may exhibit patchiness at several scales. Habitat patches will bound populations

locally in different ways depending upon the nafure of the boundary and the focal species.

Bounded subpopulations will experience local density dependence and together they may be

modeled as metapopulations. Here I present a mechanism by which local density

dependence changes the overall per capita population growth rates in metapopulations, and

discuss the implications of this mechanism for empirical population dynamic studies and for

conservation biolosv.

Consider a population distributed across trvo (or more) identical patches, where the

population in different patches can fluctuate independently of each other. That is not to say

that the subpopulations have to be completely isolated from each other or that the population

sizes cannot be highly correlated, just that population sizes sometimes may drift away from

their deterministic expectation (for whatever reason) and differ between patches. In this

paper, I investigate the effect of this variance on the expected overall growth rate of a

metapopulation relative to a comparable continuous population where this variance is zero.

Model Analvsis

To consider habitat patches of different areas, we must deal with absolute population sizes

rather than population density. Let R(N) be the per capita population growth rate in a

population of size N. Let Rn(N) be the per capita population growth rate for a population in a

habitat patch in a set of n patches - 
"u.fr I the size of the single large patch. For an

continuous population - i.e. a single large patch (n=1) - I will use RrN) and R(N)

interchangeably. Assume that the dynamics of a population can be described by the equation

N,*r = R(N) Nt . Assume negative density dependence, i.e. R'(N) < 0 for all N, which implies
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(2).

-l
that there are no Allee effects (Allee 1949). Assume that there are no edge effects and that

the habitat is equivalbnt in all patches. Define the area of a given habitat in terms of its

carrying capacity, K, for the focal species, and define K as the population size for which the

expectation of R(K)= 1 .

Take a single continuous population of size N, in an area of size K. The comparable

situation for a fragmented population (assuming equal sized fragments) is a set of small

populations in n areas each of size $ . Since N is absolute population size and not density,n

R(N) must scale with the size of the patch. Baning edge effects, there is no a priori reason

why, say. 50 individuals in a 1000 ha patch should face different conditions than would 100

individuals in a 2000 ha patch. That ir, R(+ 
) 

t" 
" reserve of size f should be equal to R(N)

( r ).

in a reserve of size K, or RrN) = R"f +) As long as the N individuals are evenly distributed
\^ ' )

across n patches each of size $ , ,f,"ir overall growth rate should be equal to the growth raten

in a single large population of size N in an area of size K, and

"I ^,(#)= NR,(AD

Comparing a single large patch with two half as large, Rr N) = *rf + ) so that-\r  
)

NR'(N) = +-,(+)+ +^,(y)
However, most of the time, there will not be identical population densities across patches in a

fragmented system. Considering the variance in population density between subpopulations,

I will show that, if and only if the function NR(N) is concave down, we have

(3)N Rr(N) >
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where Nr+Nr =N,Nl*N2l that is, the growth rate of the single population exceeds that of the

fragmented ensemble when we allow for variation in population density between

subpopulations.

(3) is equivalent to

2 N R(N) > (N+x) R(N+x,) + (N-x)R(N-x) , (4)

where x=Nr-Nz (see Appendix). Dividing by 2N on both sides we see that this is essentially

a comparison between the per capita growth rate in an evenly distributed (or single large)

population, R(N), and theweighted mean of the growth rates in ametapopulation with non-

zero variance in population density between subpopulations - where each subpopulation is

weighted by its size (cf. Fi-e. 2). Testing equation (3) is a simple matter of comparing R(N)

with the weighted mean of R(N+x) and R(N-x).

Defining a new function G(N;=1.1R(N), (4) becomes

2G(N)>G(N+x)+G(N-x)

which is equivalent to

(s)

G(N+x) - G(N) < G(N) - G(N-x) (6)

(6) is true for all N and x if and only if G(N) is concave down. Since G(N) = NR(N) we have

G"(N) = 2R'(N) + NR"(N), and (3) is true for all N and x if and only if

.l

2R'(N) +NR"(N)<0

More generally, it follows from Jensen's inequality (Ride and Westergren 1990) that a

continuous population has a higher expected growth rate than a metapopulation if G(N) is

concave down on [N-x, N+x]. Concavity is stronger than G"(N)<0, so Jensen's inequality

makes a stronger argument for (3). Jensen's inequality also generalizes to a metapopulation

consisting of n patches. G(N) is equivalent to the expected population size in the next time

interval, E[N,*r]. Hence, for the case n=2, we can quickly see which way the inequality in

(7)
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(3) goes when we plot the expected N,*r (i.e. G(N)) against N, . If the line between two

points on the graph is below the point on the graph half way between them, then (3) holds

(see Fig. 3).

With a linear R(N), R'(N) is negative and R"(N) is zero. Therefore, (7) is satisfied

and (3) holds for all N. From Fig.2a it is also clear that the per capita metapopulation growrh

rate is always lower than in a single large population, when you consider that the largest

subpopulation, which always has the lowest per capita growth rate, is weighted more the

smaller populations with higher R(N).

In the concave down case we have R'(N) < 0 and R"(N) < 0. Therefore, (7) is

satisfied and (3) holds for all N. From Fig. 2b it is also clear that the per capita

metapopulation growth rate is always lower than in single lar-ee population, even without

considering the different weighting of large and small subpopulations.

In the concave up case we have R'(N) < 0 and R"(N) > 0. If R'(N) grows fast enough

(R(N) is curved enough) to counterbalance the greater weighting of the smaller R(N+x)

relative to R(N-x), (3) will not be true. Below, I discuss the stringency of this requirement by

analyzing one example of a concave up function.

Example: R(N) is a negative exponential.

write R(N) - R0 , kN . R"(N) = -kR',(N), so (7) reduces ro

(B)

(e)

Thus, G(N) is concave down for such functions R only for sufficiently small population sizes.

The carrying capacity of a given area can be defined in terms of the population size at which

the expected per capita growth rate R(N)= 1 . Hence,

or

#>k
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t, _
tt-

ln Rs

Substituting (11) into (9), the conditions under which (3) is true is

M e tap op ulat ion grow t h rate s

(r0)

( I I ).K

For l/=K, (12) is equivalent to ln Rs < 2,

negative exponential R(N) with Rp <7.38.

lnRs 2 r .  2K
T.F of  r 'v  (  Tr& ( r2).

i .e.  R9 < 12 =7.38. Hence, (3) is t rue at  N=K for

K
et N = ? , (3) is true for Ro <ea : 54.59. That is,

although the true mean R(N) of an unevenly distributed metapopulation is greater than R(N)

in an evenly distributed (or single large) population, due to the curvature of R(N), the greater

weighting of the largest subpopulation will counteract that if these conditions hold (Fig. 2c).

Populations with very high values of Rp , however, are more likely to overshoot carying

capacity and reach densities where G(N) is concave up. Even so, G(N) typically has a

dominant hump that is concave down (cp. Fig. 3).

The shape of population growth rates

Density dependence is highly prevalent in populations of animals and plants. Tanner ( 1966)

detected significant negative density dependence in 47 of I I time series from a wide variety

of taxa. Woiwod and Hanski (1992) analysed 5715 time-series of annual abundance of 447

moth and aphid species and detected density dependence in l9%o and 88Vo of the 778 time-

series longer than 20 years (moths and aphids respectively). Unfortunately, no information

about the shape of R(N) is given in these reviews. Tanner's estimates of density dependence

were correlation coefficients (i.e. linear density dependence), and apparently no attempt was
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made to look for higher order terms. Data on shapes of density dependence in individual life

history parameters are a little easier to come by, but cannot easily be considered from the

point of the present model. For instance, Grubb (1974) gives data for Soay sheep (Ovis

aries) and Fowler (1986) for northern fur seal pups (Callorhinus ursinus) which yield a

highly concave down probability of juvenile survival. Teer et al. (1965) show that embryos

per doe in white-tailed deer (Odocoileus virginianus) is concave down with density. See

Fowler ( 1987) and Tanner ( I 966) for reviews on the importance of density dependence.

I have conducted a survey of the ecological literarure to find data sets from which the

shape of R(N) as a function of N could be gleaned. R(N) was estimated by ffi from

published time series and plotted against N(t). The shape of R(N) was estimated by fitting

linear, logarithmic and exponential functions to the data, and selecting the one which

explained the highest proportion of the variance. Log transforms of N were tried if the

curvature of R(N) seemed too great to be captured by logarithmic or exponential functions in

N. Polynomial equations of N were also used, but were not used for the final regressions

since they cannot be trusted to decline monotonically. Populations for which higher order

time-lags were needed to describe the population dynamics were not used (except where the

dynamics were explicitly characterized by the authors), although the proposed mechanism

can be evaluated from the concavity of the population trajectory in a higher dimensional

phase space. For this reason, and due to the paucity of long term studies on long-lived

organisms, most of the data are from insect populations, protozoa, or crustaceans. The

survey is by no means complete, and is only intended to illustrate what I believe to be a rather

general mechanism. There were no indications of Allee effects in any of the data sets (but

see Lamont et al. 1993).

Populations that follow the logistic or Monod equations always have concave down

G(N). This is seen most easily by realizrng that the continuous analog to G(N) ir # . In the

l

logistic eUuation $
^= aN-bN'. where a= r and r being the intrinsic population
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growth rate. Hence, the per capita rate of change is linear *d S is concave down

throughout. Hence, organisms whose growth is described by the logistic equation is expected

to have higher instantaneous rates of change in continuous populations than in

metapopulations.

Table 1 lists the data from which shapes of R(N) could be gleaned. Although many

had R(N) which were concave up, none have corresponding G(N) that were concave up in

any part of the range. Although I made a conscious effort to find data sets that might yield

concave up G(N), none were found. Many data sets that I have characterized as having

concave up R(N) may in fact be linear in large parts of the range. The concavity of the entire

range may simply be due to the fact that R(N) cannot be negative, or populations may in fact

tend to be bounded away from zero. Populations that are not bounded away from zeto may

yield only short time series which may not get published.

Not all R(N) and G(N) from the data in Table 1 can be reconstructed here, but the two

most concave up examples are shown in Figs. 4 and 5. Berryman (1991) fits a model of

population growth for pine loopers (Bupalus piniarus) to data from Klomp 1965. His model

yields a concave up R(N), and a corresponding concave down G(N). I fitted concave up

curves for R(N) with even greater curvature than Berryman's model, und. obtained better fits

(Fig. a). My regressions also yield concave down G(N) over the entire range of population

sizes in the time series. Fig. 4 shows the estimated R(N) and corresponding G(N) for the pine

loopers. These regressions are entirely phenomenological, details in their curvature may

acquire undue importance, and they should not be attributed too much weight. Hence, I show

two different regression in Fig. 4 which yield different G(N). The "true" G(N) may be

something in between Fig 4b and 4d. Fig. 5 shows estimated R(N) and corresponding G(N)

for the azuki been weevils (Callosobruchus chinensir L.) estimated from data from Utida

(1951). Both species are outbreak species with highly curved R(N), but their G(N) are

concave down throughout.
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Discussion

I have presented a general mechanism affecting subdivided populations with variance in

population density between habitat patches, and explored the conditions under which these

will have lower growth rates overall than their unfragmented, continuous, counterparts. The

overall population growth rate for a metapopulation is the mean growth rate for its

subpopulations, weighted by their population sizes. Since the larger subpopulations have

lower per capita population growth rates and are weighted most heavily, while smaller

subpopulations are weighted less, metapopulations frequently have lower overall population

growth rates than comparable continuous populations. Subpopulations that have relatively

high population sizes will be near carrying capacity and not growing very rapidly, and those

that are at low population sizes will be growing slowly because their "capital" is small (Fig.

1).

This analysis has made simplifying assumptions, notably the absence of Allee effects,

which can be relaxed for a more thorough understanding. Generally, Allee effects are

considered to affect fragmented populations more than large continuous populations (e.g.

Lamont et al. 1993). The extent to which (3) holds true can be explored graphically by

drawing different versions of G(N) versus N (see Fig. 3). (3) is true wherever the line

between two point on the graph passes below the point on the graph half way between them

on the N axis. Varying N and x it seems that the average difference between G(N) and the

line between G(N+x) and G(N-x) tends to be positive in natural populations. Readers can

explore the validity of this claim themselves, perhaps by drawing biologically realistic G(N),

cobwebbing population trajectories and picking x at random for each time step. Situations

that represent temporary exceptions are those where Allee effects or values of N far beyond

carrying capacity cause G(N) to be concave up, and x is relatively small. In most population

trajectories these negative values will be overwhelmed by more common and larger positive

values.
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Even in the case of highly curved, concave up R(N) with Allee effects, G(N) typically

has a highly dominant concave down hump which overwhelms local concave up regions. For

small values of x, any function is approximately linear and the effect will be slight. The

prevalence and importance of Allee effects in wild populations is not yet known and requires

much more sfudy. However, it seems likely that the range of population sizes at which Allee

effects are important is relatively narrow compared to the full range of realized population

sizes. The influence of Allee effects will also depend on whether specific Allee effects

depend on low population densities or absolute population size.

Dealing with organisms that exhibits high level of patchiness or clumping, one must

be extra cautious with interpretation of data on population growth rates. Empirical studies

that detect differences in growth rates between populations may find that the discrepancy is

due to one being more patchily distributed than the other. Spatial clumping and local

processes, while altering growth rates at larger scales, may also alter the overall pattern of

population fluctuations at those scales (De Jong 1979, May 1986, Bjornstad and Hansen

1994). The reduction in growth rates at regional scales and fluctuations partially out of phase

at local scales may for instance cause a reduction in the regional coefficient of variation in

abundance, and alter the regional dynamics from regular fluctuations to relative stasis. The

dynamic signals of smaller-scale regions (local interactions and processes may disappear at

larger scales (see also May 1986, de Roos et al. 1991). The mechanism also affects dynamics

of predator-prey intreractions and parasite-host interactions due to the aggregative response

of predators on their host (see the large literature on aggregative responses, clumping, and the

effects of individual behavior on population dynamics, notably in insect populations; e.g.

Hassell and May 1974, 1985, De Jong 1979, Hassell 1980, Pearman and Wilbur 1990).

Although cast in a deterministic framework, this mechanism does not ignore the

importance of stochastic events on population size, growth and viability. In fact, it depends

on them for the non-uniform distribution of individuals to arise. The mechanism is simply an

argument to show that the deck is stacked against either the metapopulation or the continuous

population, depending on the shape of R(N). Around this biased expectation there is
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stochasticity, but on average a population with a stochastic component to its dynamics will

follow that bias (see also Bjprnstad and Hansen (1994) for a general treatment of the role of

variation in population dynamic processes).

Application to anthropogenic patchiness and habitat fragmentation

The mechanism described above may be applied to man-made patches of previously

continuous habitats. Anthropogenic limits on dispersal imposes a level of patchiness on top

of whatever structure the resident populations exhibited beforehand. The new spatial

boundaries imposed by human habitat alteration impose additional density dependence at the

level of subpopulations, and consequences that are seen in simulation models exploring the

effect of habitat subdivision on extinction risk (Wright and Hubbell 1983, Burkey 1989,

1995). Habitat that is patchy to the focal organism will support metapopulations which,

overall, spend a greater proportion of their time with low overall population growth rates and

consequently more time at low population sizes, than continuous, homogenous habitat. This

should tend to make metapopulations more vulnerable to overall population extinction than

continuous population of the same size (see Burkey 1989, 1995). The importance of spatial

variability in density on population dynamics has been recognized by De Jong (1979) ,

Chesson (1981), Bjgrnstad and Hansen (1994) and others. Here, I have applied the

mechanism to populations in fragmented landscapes, explored the consequence of different

shapes of the density dependence, explored the shape of the density dependence in actual

populations and observed a seemingly general pattern.

I have been unable to think of any way to demonstrate the effect of the mechanism

described here because I see no way to separate it from the effects of demographic

stochasticity under a regime of density dependence in demographic rates. Metapopulations

tend to have reduced growth rates at the same population size, but since they also will tend to

be more often at low population sizes (especially as they near extinction) differences in

-]
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population growth rates over time would be difficult to detect in a population trajectory over

time.

As analyzed here, the mechanism favors continuous populations over subdivided

populations in all cases with R(N) linear or concave down, and under quite liberal constraints

in the example given of a concave up R(N). I consider these constraints liberal enough to

conclude that the proposed mechanism tends to reduce metapopulation growth rates in the

dominant part of biologically realistic parameter space - especially for the kind of species

for which conservation efforts are needed. An endangered species is not likely to have per

capita population growth rates greater than 7 (see above), and certainly not greater than 50.

Species with relatively low maximal growth rates are not likely to vastly overshoot their

carrying capacity, either. These are the species most in need of protection and for which

reserves are needed. For some threatened species, the reduction in population growth rate

following habitat fragmentation may be enough to cause deterministic extinction. By

affecting overall population growth rates, habitat subdivision may stabilize the dynamics of

species with extremely high population growth rates at the landscape level, and this too may

affect threatened and endangered species.

The above analysis can easily be expanded to more highly curved concave up

functions (e.g. R(N) - R0 ,-kp),to further explore the parameter space for which (3) does and

does not hold true. No data were found for which fragmented populations would have

greater overall growth rates than continuous populations, even though data from invertebrate

species with high maximal growth rates and high curvature of R(N) were studied.

In its present state, this treatment seems to apply best to animals that are free to move

around within the patch/reserve, spreading out in space so as to reduce the competitive effects

of high local density (patchiness) at a smaller spatial scale. Density dependent dispersal

between patches would tend to smooth out differences in the density of individuals among

patches, reducing the effect of the proposed mechanism. Along with the "rescue effect"

(Brown and Kodric-Brown 1977), this suggests a role for inter-patch dispersal in reducing the
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probability of extinction in fragmented landscapes. Habitat corridors (Harris 1984), may to

some extent alleviate the effects of this mechanism by making otherwise isolated patches

effectively contiguous. The effect may be reduced by regional environmental variability

which could make subpopulations more correlated with each other. The mechanism is most

likely to negatively impact subdivided populations of species with low to moderately high

maximum population growth rates, which are the species most likely to be of concern to

conservation bioloeists.
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Appendix

Eq (3) isequivarentroNR,N) ' (+.-)  * ' [+.-) . ( ]  . )  *r( ]  . )

Rr(N) = *r[]) , viero'*r(+*. )- 
RrtN + 2x) ana nz(] . 

)= 
*,(N - 2x). Hence (3) implies

(A1).

(A2).

(A3)

NR,(N) '  (+.-)  Rro{+2x) + (}  - )  
* , (N-2x)

Multiplying both sides by 2 and writing R instead of R1, we have

2N R(N) >

Writine x instead of 2x, we have

2N R(N) >

QED



I
Table 1. Studies considered where the qualitative shape of R(N) could be determined: reference, taxon, and
shape of R(N). Population trajectories described by the author(s) as "logistic" have been listed as such. These
will always have a concave down G(N) throughout the range of population sizes. Some authors may have
sampled on a frequencv somewhat different from the generation time of the organism.

Study Taxon Shape of R(N)

Klomp 1965
Bittancourt l94l
Bodenheimer 1937
Hochbergh et al. 1992
Edgerley and Livdahl 1992
Gause 1934
Gause 1931
Park et 

^1. 
1941

Park et al. l94l
Pearl 1930
Pearl 1930
Terao and Tanaka 1928
Davidson 1938a
Davidson 1938b
Pimentel et al. i963
Pimentel et al. 1963
Utida 1957
Utida 1957

pine loopers, Bupalus piniarus
ant, Atta sexdens rubropilosa
honey bee, Apis ntellifera
large blue butterfly, Maculinea rebeli
reehole mosquito, Aedes triseriatus
Parantecium caudatunt
flour beetle (f.b.), Tribolium confusunt
broad horned f .b.. Cnathoceros cornutus
Trogoderma versicolor (a dermesid beetle)
D ro s op hila nrc I ano gzst e r
yeast
water flea, Moina macrocopa
sheep (South Australia)
sheep (Tasmania)
house fly pupae, Musca domestica
house fly adults, Musca domestica
azuki been weer'1l, Callosobruchus chinensis a)
azuki been weevll, Callosobruchus chinensis b\

Concave up
Lo,eistic
Logistic
Sigmoidal
Linear
Logistic
Logistic
Concave up
Linear
Logistic
Lo-eistic
Logistic
Logistic
Logistic
Concave up
Linear
Concave up
Concave up
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K=20
N=5

[ .' . lrol t rx:?: H"V*,.*.
Single Large Two Small

Figure 1. Twenty individuals (dots), in a) a single large reserve and b) unevenly distributed across two small

reserves (squares); u,ith corresponding locations (circles) on a logistic growth curve. Whenever the distribution

of individuals in a subdivided reserve is non-uniform, the overall growth rate is lower than that in a continuous

reserve. The critical factor is the slope of the growth curve (S) insiOe the little circles, which follows from the

function R(N) weighted by the population size at the same points. # tt greater in the single large reserve than

in the two small reserves tosether.

K=40

' . .
a a ao

o

aa
aa

aa
a

aa
a

I a

N=20
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a

R(N)

N N+x(

R(N)

Figure 2. Linear, concave down and concave up per capita growth functions. Compare the

weighted mean of R(N-x) and R(N+x), with the magnitude of R(N). a) Linear: the mean is

identical, but the weighted mean is less than R(N). b) both the mean and the weighted mean is

less than R(N). c) the mean is greater, but the weighted mean is still less than R(N) in a large

portion of parametcr space.

b

c

R(N)
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N-x

Figure 3. Hypothetical map of N onto G(l'Q, corresponding to a concave up R(N) - figure 2c.

The dotted line indicates the mean of G(N-x) and G(N+x). The distance from the dotted line

between any two points on G(N) and the point on GCQ halfway between them is the advantage to a

continuous population over a metapopulation in that particular realization - or disadvantage if

G(N) is concave up between G(N-x) and G(N+x).
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