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Habitat loss, the reduction of the habitat area available, is known to greatly reduce resident
species’ expected time to extinction. This process is widely recognized, if not adequately
understood or quantified except in very simple models. However, it is not well understood how
the time to extinction will change if the remaining habitat is distributed across a set of smaller,
isolated patches, instead of being left in one single, continuous tract. The effect of habitat
fragmentation on population persistence under demographic stochasticity has not been
resolved. Specifically, it is not known whether a single large population will persist longer than
an aggregate set of several smaller populations (with the same total size). Analytical studies of
birth-death processes typically report the mean time to extinction for a single population as
a function of the maximum population size, but omit higher moments. To estimate the overall
persistence time, or the probability of extinction as a function of time, for a set of small
populations, the entire distribution of extinction times must be known for a single population
of each size. Knowing all the moments of the distribution of extinction times is not adequate,
unless one can reconstruct the distribution from them. Here T analyse stochastic birth—-death
processes with linear density dependence in per capita birth and death rates, and obtain
analytical expressions and numerical solutions for the distribution of extinction times in both
subdivided and continuous populations. This is a single-species model that deals with demo-
graphic stochasticity only, and assumes independence of extinction events in different patches.
These assumptions are relaxed elsewhere. Habitat fragmentation, even without any loss of
overall area, has a great and detrimental effect on the persistence time of populations across all
temporal and spatial scales. The effect is similar across spatial scales, but shifted in
time—larger populations take longer to go extinct but the extinction risk relative to that of
a smaller or more fragmented population is the same across spatial scales for the available
habitat.
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Extinction in Fragmented Habitats Predicted from Stochastic Birth-death

1. Imtroduction

Diamond (1975) and Wilson & Willis (1975) first
suggested that a single large reserve was a better
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reserve strategy than a set of small reserves of the
same total area. The SLOSS debate (Single Large
Or Several Small reserves) that ensued was dis-
torted by a confusion of goals (see Burkey, 1989).
Several authors (Simberloff & Abele, 1976, 1982;
Abele & Connor, 1979; Gilpin & Diamond, 1980;
Higgs & Usher, 1980; Higgs, 1981; Jarvinen,
1982; Margules et al., 1982; Quinn & Harrison,
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1988) held that one could increase the number of
species (initially) present in the reserve system by
strategically establishing several small reserves
with slightly different species compositions.
Others (Wilson & Willis, 1975; Diamond, 1975,
1976; Terborgh, 1976; Fahrig & Merriam, 1985)
held that the risk of extinction was lower in
a single large reserve than in a set of small re-
serves (of the same total area), though this has
not been adequately demonstrated (but see
Wright & Hubbell, 1983; Forney & Gilpin, 1989;
Burkey, 1989, 1996). Minimizing per species ex-
tinction probabilities is the most appropriate
goal for conservation purposes (Diamond, 1976;
Terborgh, 1976; Whitcomb et al., 1976). Some
trivial arguments for why the risk of extinction
may be lower in a single large reserve can be
brought to bear (e.g. each of the small areas may
not be large enough to protect a critical water-
shed, or to cover the home range of large, widely
roaming animals), but the answer is by no means
obvious in less contrived scenarios. We still can-
not say with confidence whether a population of
400 individuals in a continuous habitat area of
size A4 (large enough that the population does not
go rapidly and deterministically to extinction)
will persist longer or shorter than two popula-
tions of 200 individuals each in two isolates of
size A/2 each. While we may suspect that the
answer may depend on the species in question
and the spatial scale of the habitat areas, the
spatial correlation of environmental variation
and disturbances, and perhaps other factors as
well, we cannot say what level of environmental
fluctuations or what degree of spatial autocorre-
lation of such disturbances would change the
answer in one direction or the other.
Fluctuations in population size due to random
events of births and deaths—demographic
stochasticity—is widely recognized as an impor-
tant cause of extinction in finite populations.
Finite populations are usually modelled as
stochastic birth-death processes and analysed as
Markov chains (e.g. MacArthur & Wilson, 1967;
Goel & Richter-Dyn, 1974; Goodman, 1987;
Mangel & Tier, 1993). Even in simple cases with-
out environmental stochasticity, and just demo-
graphic stochasticity, it is not clear what the
effect of habitat fragmentation on extinction risk
is (assuming the overall area remains constant).

Density dependence is critical to the study of
relative extinction rates in fragmented and un-
fragmented landscapes under demographic
stochasticity (Burkey, 1989). Without density
dependence, the fates of all individuals are
independent regardless of whether or not they are
isolated in different habitat fragments, and
fragmentation becomes irrelevant to the extinc-
tion process [see e.g. the models by Bailey (1964,
p- 95) or Jarvinen (1982)]. Much work has been
done on stochastic birth-death processes (e.g.
Feller, 1939; Bailey, 1964; MacArthur & Wilson,
1967; Goel & Richter-Dyn, 1974; Pielou, 1977),
but explicit solutions have not been found for
birth-death processes with biologically realistic
density dependence.

We do not know how extinction times for
single populations are distributed, much less
what the aggregate distribution of extinction
times for a set of two or more populations may
be. Typically, authors have resorted to finding
the moments of the time to extinction for a single
population of a given size, and further analysis
has been restricted to the first and second
moments. Unfortunately, assessing the overall
persistence time for a set of populations requires
the entire distribution of extinction times for
single populations, not just individual moments.
To estimate the persistence of a set of isolated,
finite, reserves under demographic stochasticity,
we need either the probability of extinction as
a function of time for a population in a reserve of
that size or the complete distribution of times to
extinction. The aggregate distribution of overall
extinction times for a set of n populations is the
maximum of n realizations drawn from the distri-
bution of extinction times in a single population
of the relevant size. If the distribution of extinc-
tion times have a very long tail, we might except
that a large set of small populations, which have
many shots at “hitting” this long tail could persist
longer than a single large population.

The mean time to extinction, which is com-
monly reported from analytical extinction mod-
els, is a notoriously bad metric of the extinction
process (Quinn & Hastings, 1987) and the overall
persistence for sets of identical populations can-
not be calculated from the mean. The median
time to extinction would be a lot more useful,
since from it we can calculate the probability of
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extinction for a set of independent, identical
populations at that particular time. Even all the
moments of the distribution of extinction times
are not adequate for the task of comparing ex-
tinction times for a set of small populations with
the corresponding single large population—un-
less a way can be found to reconstruct the distri-
bution from the moments. Closed-form solutions
for the moment-generating functions have not
been found and the distributions are not easily
reconstructed. The most useful metric for com-
paring persistence times for fragmented and un-
fragmented systems is probably the probability of
extinction as a function of time for populations of
given sizes. Under the assumption that isolated
subpopulations are independent, the probability
of overall extinction for several identically dis-
tributed populations at any given time is simply
the n-th power of the probability that a single
such population goes extinct by that time.

Here I explore the effects of habitat fragmenta-
tion on extinction probabilities under demo-
graphic stochasticity, under the assumption that
the persistence times of isolated subpopulations
are independent random variables with the same
distribution. To isolate the effect of habitat sub-
division from that of habitat loss per se, I will
compare the extinction proneness of a single
large population in a large area with a set of

smaller populations isolated in smaller areas that
add up to the same area overall as the single large
area. I will assume the initial population size,
maximum population size and carrying capacity
of each habitat area scales linearly with its size
(area). I present an explicit model of a stochastic
birth-death process with linear density depend-
ence in per capita birth and death rates to study

[ —d,—b, ds 0 0
by —dy—b, ds O
M = 0 ba 0
dw,,.
0 0 brpm1  — dy, — by,

the behaviour of such a system. This is a single-
species model that deals with demographic
stochasticity only, and assumes independence of
extinction events in different patches. I show
exact solutions of this process, which for moder-
ate to large populations rely on numerical solu-
tion of the critical equations for the populations.
Multi-species systems with predator-prey inter-
actions, linked subpopulations, and environ-
mental as well as demographic stochasticity are
modeled elsewhere (Burkey, 1996).

Model

Extinction under demographic stochasticity
with density dependence can be simulated (Bur-
key, 1989, 1996), and a stochastic birth-death
process can be explored numerically as a branch-
ing process on a computer. Here I introduce an
exact solution of a density-dependent stochastic
birth-death process.

Consider the system

dP
i MP
where P is an Np. X1 vector with elements
P; representing the probability that a population
is at size i € [1, N, ] at time ¢, and

where d; and b; are death and birth rates (# zero),
respectively, at population size i. Since P does not
contain the probability that the population size is
zero, Py(t), the decay of this system over time
represents the probability of extinction. All the
eigenvalues have negative real parts. From Ger-
schgorin’s Theorem (Rade & Westergren, 1990),
we know that the eigenvalues are all within
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the union of a circle with radius b; around

—dy — by and the circle with radius r =
maxf’g";(d,- + b;) around —r. It is easy to show
that zero is not an eigenvalue.

Let A; and g; be the i-th eigenvalue and eigen-
vector of M, respectively. We have P = ¢, ge™’ +
CzSzelzt + -+ cNmustmaxeleaxt'

Set

Nmax

Oi=c¢ Z Eijs
j=1

where ¢;; is the j-th element in the i-th eigenvec-
tor. Then the probability that the population is of
a size between one and N,,,, at time ¢, is

Pr(t) = Py(t) + Py(¢) + -+ + Py, (1)

max

N max

=Y Qie*.
=1

i

The cumulative distribution function for the time
to extinction is F(t) = 1 — Py(t). The probability
density function for the time to extinction f(t) =
2?2"1‘ — Qidie,

Consider a given habitat area, defined by its
carrying capacity, K, and its maximum popula-
tion size, Nmax. K is defined as the size at which
the population is expected to just replace itself,
and Nwmax is a population ceiling that cannot be
exceeded. Then dk = bk (bw,,, =0). Assume that
K and Nmax are proportional to the area of the
available habitat. If we divide the area into #n iso-
lated pieces without any loss of area, we get
n patches each of carrying capacity K/n and max-
imum population size Nwmax/n. In a set of n small
populations, di, bi, 4i, &, ¢i and Q; must all be
functions of the size of the habitat patch—which
depends on n. Denote the distribution of extinc-
tion times for a single such patch as fu(t), and its
cumulative distribution function as Fu(t). Then
the cumulative distribution function for the over-
all extinction time of the set of n independent
small populations is F(t) = Fu(t)", and the prob-
ability density function is

f@) =nF,0) " £i(t)
=n,|:1 — fo Qielit}n_l |:fo —Qiliel"t:|.

i

We can find eigenvalues and eigenvectors of
M and solve for the ¢’s, given initial conditions
and functions for d; and b;.

Numerical Solution by Iteration

In a discrete-time model, let dy = d(N)N At
and by =b(N)N At be the probabilities of
a death and a birth, respectively, in 4t if the
population size is N. Let the patch-specific carry-
ing capacity, K, be the population size at which
a population isolated in a given area has expected
number of births equal to the expected number of
deaths, ie. d(K) = b(K). Consequently, d and
b are functions of K, or analogously, the area of
the habitat patch. Making the time step, 4t, so
small that the probability of multiple events in 4t
is negligible, we have

P; x(t) = Py x(t — 4t)(1 — d; x — b;x)
+Pyq,x(t —At)d; g + P,y x(t —At)b; k.

The probability of extinction by time ¢ is
P, x(t) = P; x(t — A1) + Py g(t — 4t)d, &,
where d; x = dg(1) 4t is the probability of a death

if the population size is one. The cumulative
distribution of extinction times is

Fx(t) = P k(1)

.and the distribution of extinction times is

Jx(®) = P g(t) — P x(t — 41).

The cumulative distribution of extinction times
for a set of n independent small populations, each
of size K/n is

F, kn(t) = Fy gin(t)" = Pe, k()"

and the distribution of extinction times for a set
of n small populations is

dFy, ga(t)"

f;l,K/n(t) = dr

dF; x/m(t)

=nFy () ! dt

=nFy,km®) ™ 1, k().
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Choosing d(N) and b(N) and an initial distribu-
tion of population sizes, the system can be solved
by iteration. In the following I will assume that
Pg(0) = 1, i.e. all populations start at their carry-
ing capacity. d(N) and b(N) change with avail-
able habitat area such that d(0) and b(0) are
constant irrespective of area, and d(K)|x-x =
b(K)|g=k where K’ is the area-specific carrying
capacity.

For instance, let d(N) and b(N) be linear in N,
d increasing with N and b decreasing with N.
Make b(N,.,) =0 so that the population size
never exceeds N,,,.. Hence, d(i) and b(i) in a patch
of K = K'/n must have slopes n times the slopes
of the comparable rates in a patch of K = K.
This is the way in which density dependence is
incorporated in all the calculations presented in
this paper.
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Results

There is extremely close agreement, at all
time-scales, between the exact solution of the
density-dependent birth-death process and the
approximation based on the dominant eigen-
value, 1 — e’ It is well known that the dominant
eigenvalue of such systems has the strongest ef-
fect on the solution and tends to dominate it after
many iterations (e.g. Gantmacher, 1959; Fuller,
1962; Edelstein-Keshet, 1988). In the present
model, the approximation tends to be quite
good from the start. In many cases, the approxi-
mation is so close that the two cannot be told
apart when showed together [Fig. 1(a)]. Display-
ing the difference between the probability of ex-
tinction as a function of time in the two models is
therefore often necessary to show the two to-
gether (Fig. 1).
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FIG. 1. The cumulative distribution of extinction times (or the probability of extinction as a function of time), for the
stochastic birth-death process with linearly density dependent demographic rates—exact and approximate solution. (i)
approximation and exact solution together, (ii) the difference between the exact and the approximate solution. K = 20,
Noax = 40 in an unfragmented area (a), or the same area divided into four independent fragments (b); dg = 0.2, bg = 0.5. The
close proximity between the exact solution and the approximation is due to the fact that the dominant eigenvalue is huge

compared to the subsequent eigenvalues.
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FIG. 2. The distribution of extinction times for a single
large population in an area with K = 8, N, = 16, a single
small population of K = 4, N, = 8, and two such small
populations with a combined size equal to that of the single
large population. The single large population persists much
longer than both a single small population and a set of two
small populations which together have the same amount of
available habitat as the single large population. dy = 0.2 and
by = 0.5. The distributions resemble gamma distributions
with « > 1, and the shape for a pair of populations or larger
single populations resemble gamma distributions with high-
er values of f5.

Small populations go extinct sooner than large
populations (this is well known from other stud-
ies: MacArthur and Wilson, 1967; Goel and Rich-
ter-Dyn, 1974; Ludwig, 1974; Burkey, 1989, 1995,
1997). A fragmented population goes extinct
sooner than an unfragmented population of the
same overall size (Fig. 2). The distribution of
extinction times is approximately gamma distrib-
uted with o > 1 at all spatial scales, and the shape
for a pair of populations or larger single popula-
tions changing as by increasing f (the gamma
distribution can be written as f(¢) = t*~le~"#/
BT («), where T'(a) = [>t*" ‘e ™" dt and af is the
mean while af? is the variance). A single large
population has a distribution of extinction times
that resembles a gamma distribution with larger
B value than both a set of small populations and
a single small population (Figs 2 and 3). The
maximum likelihood estimate for f§ increases ex-
ponentially with the magnitude of K for both
single populations and pairs of populations. On
a smaller scale, a decreases with K—a ap-
proaches unity asymptotically but never reaches
this value, where the gamma distribution would
have switched to a negative exponential distribu-
tion. The combined result of these two trends is
that the mean of the distribution, y = af, in-

Single population
0.004 | gl pop
- K=8,N,, =16
0.003
< 0002 | ‘Two populations
0.001
0 -

F1G. 3. The distribution of extinction times for a single
population in an area with K = 8, N, = 16, and the ag-
gregate distribution of extinction times for two such popula-
tion, showing the exact numerical solution and the best
fitting gamma distribution for each. Demographic para-
meters as in Fig. 2. The best fitting gamma distributions, as
estimated by simulated annealing, have parameter estimates
o =122, f =258.74 and o = 2.04, § = 670.35, for the single
population and the set of two populations, respectively.
Numerical solution (——); best-fit gamma distribution
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F1G. 4. The probability of extinction as function of time
for habitat areas of different sizes (i.e. the accumulative
distribution of extinction times). do = 0.2 and by, = 0.5. The
probability of extinction for n reserves of a given size, assum-

ing independence, is the n-th power of the probability of
extinction for an area of that size.

creases exponentially with K. The o values
for a pair of populations are larger than for
a single population, making the distribution
more rounded and dragged out.

The inclusion of greater habitat area available
to a population vastly enhances its ability to
persist through time (Fig. 4).

Fragmented systems go extinct much sooner
than continuous systems of the same size. Fig-
ure 5 compares the distribution of extinction
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times and the cumulative distribution times in
single large, two small and a single small (half the
size of the large) reserve at two spatial scales. The
large reserve in Fig. 5(a) is identical to the small
reserve in Fig. 5(b). Note the increase in the
critical temporal scale, and the similarity of the
fragmentation effect across spatial scales. Apart
from an initial relatively flat section, the cumulat-
ive distribution of extinction closely resembles
the function 1 —e™“ (i.e. 1 minus a negative
exponential distribution with ¢ a positive con-
stant). This follows from the close approximation
of the exact solution by the model based on the
dominant eigenvalue only. The flat section near
t =0 follows from the fact that a stochastic
birth—death process can only go extinct after N(0)
time steps (albeit with At small), and that the
number of paths to extinction is restricted at
small time-scales. The number of combinations of
birth and death events that lead to extinction by
a given time increases dramatically at longer

@
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time-scales. The probability of extinction for a set
of small populations remains flat longer since it
constitutes a higher power of a distribution with
small values at small time-scales. Larger systems
take longer to go extinct, but the comparison of
a single large population with a single small (half
the size of the large population), and a pair of two
such populations, is consistent across spatial
scales. In all solutions shown here, the model is
initialized so that the maximum attainable popu-
lation size is twice the carrying capacity, K (the
population size at which the expected number of
births per time interval equals the expected num-
ber of deaths).

The uniform effect of habitat loss and frag-
mentation across spatial scales becomes evident
on a logarithmic time-scale (Fig. 6). Figure 6
shows extinction probabilities for single popula-
tions (dotted lines) and pairs of populations (solid
lines) of a given size, and the persistence of
a single large population can be compared with

()
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s | Two small
= 0.0004
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or Single large
0 1000 2000 3000 4000 5000 6000
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1.0 b K=80,N,, =160
08 }  Single small
06
o 04
02t Single large
0 -

0 1000 2000 3000 4000 5000 6000
Time

F1G. 5. Distribution of extinction times and cumulative distribution of extinction times for a single large population,
a single small populations half the size of the large population, and two such small populations with a combined size equal to
that of the single large population. dy = 0.3 and by = 0.5. (a) K =40, N, = 80 in the large population, (b) K = 80,
Npax = 160 in the large population. A single large population in (a) is identical to the single small population in (b).
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FIG. 6. The probability of extinction as a function of time
for single populations and pairs of populations in habitat
areas of different sizes. Compare single populations of size
K with a set of two populations each of size K/2. Demo-
graphic rates are identical to those in Fig. 5. The effect of
fragmentation is recognized across spatial scales, at different
temporal scales. Single population (------ ); two popula-
tions ).

that of two independent populations of the same
total size. The median time to extinction is the
time at which a line through 0.5 on the ordinate
axis intersects each curve. Single, continuous
populations persist much longer than the compa-
rable fragmented systems.

Figure 7 makes more explicit the comparison
of a continuous population with populations
fragmented to varying degrees. Subdividing
a habitat area into increasingly smaller pieces
(without any loss of overall area, as before) causes
more rapid extinction of the focal species. The
more fragmented a system is, the shorter its
persistence time. This effect is strong across
differential spatial scales—note the logarithmic
time-scale of the comparison.

The decline in persistence time continues with
increasing fragmentation across all degrees of
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F1G. 7. The effect of habitat subdivision on the probabil-
ity of extinction as a function of time for an area of size
K =80, N, = 160 split into one, two, four or eight sub-
populations. Demographic rates are identical to those in
Fig. 5.

fragmentation. The median time to extinction
(the time until the probability of extinction
reaches 50%) increases exponentially with
K (Fig. 8). This is also true for pairs of popula-
tions of the same size, as well as increasingly
fragmented reserve systems. The rate of increase
in persistence time with available habitat is so
large that a less fragmented system always per-
sists longer than a more fragmented system of the
same total size. Scaled logarithmically, the differ-
ence between median extinction times for more
fragmented systems and less fragmented systems
of the same size is identical at all spatial scales
(see Fig. 8). Compare, for instance, the persistence
time for a single reserve with that of two reserves
each half the size and four reserves each a quarter
the size of the continuous reserve. These results
are robust to a variety of different kinds of den-
sity dependence that can be incorporated into the
model [different shapes of d(n) and b(n)]. Differ-
ent shapes and values for d(n) and b(n) merely
alter the critical time-scale of comparisons.

Discussion

In this stochastic birth-death model with den-
sity dependence in demographic rates, popula-
tions in fragmented landscapes go extinct much
sooner than unfragmented population in con-
tinuous landscapes of the same overall size. Me-
dian extinction times increase exponentially with
available area, but the effect of fragmentation is
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FIG. 8. Median time to extinction (the time until the
probability of extinction reaches 0.5) as a function of K, for
single populations, for a pair of populations, four popula-
tions and eight populations, each of size K. The maximum
population size is two times K. Demographics rates as in
Fig. 5. The linear relationship and the constant distance
between median extinction times for one population and
two populations indicates that the effect of fragmentation is
identical across spatial scales—only the relevant temporal
scale changes. Compare for instance the medium time to
extinction for a single reserve of size 40 with two of size 20,
or four of size 10. In this figure, we can also see the combined
effect of habitat loss and subdivision of the remaining habi-
tat. Time can be thought of in years, but the actual timing of
extinction will be affected (reduced) by many other factors
which the model does not consider, and will vary from
species to species. Number of population: one (O); two ([-I);
four (8B); eight (H).

the same across spatial scales. Applied to the
design of nature reserves for the conservation of
endangered species, these results indicate that
nature reserve systems should be as large as pos-
sible and as unfragmented as possible. Recall,
however, that the present model incorporates
only demographic stochasticity and ignores
environmental stochasticity. The effect of
adding environmental stochasticity and dispersal
between subpopulations is studied elsewhere
(Burkey, 1989, 1996).

While density dependence is critical to the un-
derstanding of fragmentation effects in popula-
tions subject to demographic stochasticity (see
Jarvinen, 1982; Burkey, 1989, 1996), the results
shown here are robust to changes in the shape of
the birth and death rates as a function of density.
Even death rates that decline with density yield
results similar to those displayed here. The main
requirement is to limit the populations size of
a given habitat patch in a way that is related to its

area. The actual time to extinction obviously
depends on the difference between birth and
death rates at different densities, but the qualitat-
ive effects of fragmentation are robust to changes
in parameter values and the shape of the density
dependence. Many other mechanisms and factors
will affect the temporal scale of extinction, reduc-
ing extinction times relative to those calculated
for these models that ignore them.

It has been argued (e.g. Goodman, 1987) that
the exponential increase in mean extinction times
with increasing habitat area in this kind of model
makes extinction in all but the smallest reserves
unlikely to the extent that demographic stochas-
ticity is relatively unimportant in causing the
extinction of populations. However, the detri-
mental effect of fragmentation in such models is
strong at all spatial scales, and the pattern of this
effect scales log-linearly with area (Fig. 8). Since
the persistence times of real populations will be
reduced by many factors ignored in these mod-
els—e.g. predation, disease, genetic effects, Allee
effects, environmental variation, variation in sex
and age structure—I would argue instead that
the persistence of many fragmented populations
will be reduced to time-scales that must be con-
sidered in conservation planning and manage-
ment. For instance, Mangel & Tier (1993) show
that when moderate environmental disturbances
are included in the MacArthur—Wilson model,
the extremely long extinction times for modest
values of K disappear. Such disturbances will
also tend to bring finite populations repeatedly
into the range of populations sizes where the risk
of extinction from random events is substantial
(see Burkey, 1996).

The actual time to extinction will be hugely
variable from species to species, but the effect of
fragmentation on their viability may be relatively
invariable across species—albeit at different tem-
poral scales. Even if the estimated time to extinc-
tion is long relative to the time-scale at which
policy makers and managers usually operate,
I see no reason to make decisions about habitat
management that, although innocuous in the
short term, are bound to be detrimental in the
long run. Furthermore, interactions between spe-
cies and the potential for cascade effects following
the loss of particularly extinction prone species
makes it important to make policy decisions
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based on the large, area sensitive species that
exist at low densities and are likely to be nega-
tively affected by fragmentation on short to mod-
erate time scales. Since the model ignores sex and
age structure among other things, the carrying
capacities and maximum population sizes used
here to define the size of a habitat patch should
be thought of in terms of the number of reproduc-
tive females in the population.

Extinction times of both single populations
and fragmented populations are approximately
gamma distributed. The gamma distribution of
extinction times emerges in the following manner:
in the discrete model with small A4t, only one
event can occur in any given unit of time so the
earliest time at which the population can go
extinct is after N(0) time steps. There is only
one way in which this can occur (a death in every
consecutive time step). After that the number of
different ways in which the population can go
extinct by subsequent units of time increases
rapidly as the number of different permutations
of births and deaths leading to the required num-
ber of net deaths. This causes the increase phase
of the gamma distribution. The schedule of per
capita birth and death rates remain constant,
however, so the distribution of probabilities of
population sizes [leaving out P(N = 0|¢t)] event-
ually becomes fixed—analogous to the way an
age structure eventually stabilizes under a fixed
schedule of mortality and reproduction. The
height of this distribution of course is not con-
stant, as a greater proportion of the trajectories
are absorbed at N = 0. Extinction now occurs as
a constant proportion, d(1), of a steadily declin-
ing number, P(N = 1|t), dies—yielding the nega-
tive exponential, or geometric, distribution that is
the right-hand tail of the observed distribution of
extinction times.

In general, the gamma distribution arises as
the waiting time for n independent processes
decaying as a negative exponential. In the present
case, it arises as the waiting time for N (0) different
lineages to go extinct. Since the present process
has density-dependent birth and death rates, the
extinction of the different lineages is not entirely
independent. Hence, the discrepancy between the
best fitting gamma distribution obtained by
a crude Metropolis algorithm for simulated an-
nealing (Kirkpatrick et al., 1983) may be ascribed

to this dependence (or to the crudeness of the
Metropolis algorithm). In a set of independent
populations the interdependence between
lineages is reduced (since some of them are in
different patches), and the best fitting gamma
distribution has a correspondingly improved fit.

Since the distribution of extinction times has
a long (infinite) tail, one might think that a set of
small reserves having several opportunities to
“hit” this long tail, might have a substantial
chance of having at least one subpopulation per-
sisting longer than the population in the compa-
rable single large reserve. However, the decline in
persistence time with decreasing habitat area
is so rapid in these models that this does not
happen—the tails of the distribution of a small
reserve is so thin that the thicker tail of the
distribution for the larger reserve overwhelms the
benefit of having “back-up” populations.

The present analysis apparently disagrees with
earlier simulation results (Gabriel & Biirger,
1992) that the distribution of extinction times for
single populations in models of this kind are
distributed approximately as the negative ex-
ponential or the geometric (in the discrete case).
This discrepancy is explained by the fact that
these authors displayed their results in histogram
form, pooling across a relatively large interval on
the time axis. Thus, the increase phase of the
gamma distribution is obscured in bars which
also include the peak of the distribution (al-
though in some cases it is hinted at by slightly
lower than expected numbers at the left tail of the
distribution). Initiating the system near the quasi-
stationary distribution of population sizes (prob-
abilities of being at a given population size)
would also yield an approximately geometric dis-
tribution of extinction times.

The calculation of extinction probabilities for
sets of small reserves assumes that the fates of
populations in isolated reserves are independent
of one another. This assumption can be violated
in two ways. Either the reserves are not com-
pletely isolated from each other so that some
dispersal between subpopulations is possible.
This “rescue effect” (Brown & Kodric-Brown,
1977) enhances the persistence of metapopula-
tions under some conditions (Burkey, 1989, 1996;
but see Simberloff et al, 1992; Hess, 1994;
Burkey, 1997). Alternatively, the fates of
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subpopulations may be linked through large spa-
tial scale environmental variation, “catastrophes”
or “environmental stochasticity”. This spatial
correlation leads to a reduction of persistence
times relative to those estimated under the as-
sumption of independence. The assumptions of
independence and the absence of environmental
stochasticity are relaxed elsewhere (Burkey, 1989,
1996).

To the mechanisms discussed here should be
added an assortment of edge effects, population
genetic, pragmatic and economic effects, epi-
demiological effects, population dynamics and
autecological effects—most of which, I believe,
favor unfragmented systems. It could be argued
simply that habitat fragmentation is the anthro-
pogenic process of making the world more frag-
mented than it once was, and that most animals
and plants were adapted to the previous state and
their populations were doing fine before this pro-
cess got as far as it has in our human-dominated
world.

I thank Steve Pacala for insightful advice and en-
couragement on this paper. I am indebted to Ben
Bolker and George Hurtt for help developing the code
for the metropolizer used to find the maximum likeli-
hood parameters for the Gamma distributions, for
helpful and insightful discussion throughout, and for
comments on earlier drafts of this manuscript. I thank
Steve Hubbell, Simon Levin, Thomas Hansen and two
anonymous referees for helpful comments on previous
drafts.
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