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We present a seasonal model of a population in which there are differences between
individuals. Dominant individuals defend breeding/feeding territories and are always
assumed to obtain sufficient resources during the summer; in the winter there is no
breeding, no territorial defence, and no individual differences. During the summer
there is contest competition, and during the winter there is scramble competition. We
study the effect of varying the length of the winter and summer seasons relative to each
other, and varying the degree of patchiness in the distribution of food resources. Both
longer winters and more patchily distributed resources decrease the stability of the
population from year to year, causing it to exhibit cyclic behavior of increasing period
and ultimately chaotic dynamics and population crashes. The kind of resource patchi-
ness implemented in this model has a different effect on the population dynamics than
in most patch models, where increased patchiness is generally considered to have a
stabilizing effect. We discuss our results in light of observed mammal cycles in the the
arctic and north temperate zone, and particularly with respect to the tendency for
northern populations to be more cyclic than southern populations.
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Princeton, NJ 08544-1003, USA. — N. C. Stenseth, Div. of Zoology, Dept of Biology,
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There appears to be a consensus in the ecological litera-
ture that habitat heterogeneity and patchiness has a stabi-
lizing effect on the dynamics of populations and on spe-
cies interactions (e.g. Huffaker 1958, Levins 1970, Levin
1974, Atkinson and Shorrocks 1983, Nisbet and Gurney
1982, Hastings 1990; see Kareiva 1990). This stabilizing
effect has been suggested in single species systems as
well as in predator-prey and competitive interactions. To
our knowledge, only the studies by Rosenzweig and
Abramsky (1980), Forney and Gilpin (1989) and Burkey
(1989) provide examples to the contrary: Rosenzweig
and Abramsky (1980) argue that habitat heterogeneity
may prevent precise coadaptation between voles and their
food. Burkey (1989) shows that, in a single species model
with demographic stochasticity, dividing the available
habitat area into patches increases the probability of ex-
tinction. This is consistent with Forney and Gilpin’s
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(1989) laboratory experiment. It is, however, premature
to state that increased patchiness generally increases the
probability of population extinction, since this depends
on the curvature of the probability of extinction as a
function of patch area (Burkey, unpubl.).

Published studies typically consider patchiness at a
relatively large spatial scale, with individual patches
larger than several home ranges for the focal species.
Here we present a model where resource patchiness is
considered at a smaller spatial scale, and where the value
of the resource to each individual may be reduced due to
its patchy distribution. The model is developed with
small rodents in mind, but may be relevant for many taxa
in a patchy and/or seasonal environment. Small rodents
(living in a highly patchy environment; cf. Stenseth 1983)
are known for their multiannual density cycles. Snow
cover and seasonality seems to be associated with these
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Fig. 1. The summer model. Top: the amount of resources, y(x),
available to an individual of rank x, as population size increases.
The amount of resources the population as a whole has to put
into reproduction is equal to the shaded area above the dotted
line y(x) = m. The amount of total resources, V, is equal to the
total area under the curve in the two graphs on the top right. The
way in which resources are allocated (top) determines the shape
of the model in phase space (bottom). The dotted line N(t+1) =
N(1), may be used for cobwebbing. (Modified from Lomnicki
1988).

density cycles (cf. Hansson and Henttonen 1985). Such
density cycles typically have a three to five year period in
the case of rodent populations (e.g. Stenseth and Ims
1993), and a ten year period in the case of snowshoe
hares and their predators (e.g. Akcakaya 1992).

Our simple model unifies the effects of quality and
quantity of food resources, climate and seasonality, tem-
poral and spatial heterogeneity, and individual behavior
(with individual differences and territoriality, with a po-
tential link to predation) — all of which have been key
candidates for explaining the cycles (Stenseth and Ims
1993) — in a single body of theory. We have built on
Lomnicki’s (1988) ideas on the population dynamics of
individuals, by combining two of Lomnicki’s models to
make one. We use this model to study the effects of
resource patchiness and the effects of a seasonally varia-
ble environment on the population dynamics of a herbi-
vore species. Our model incorporates habitat patchiness
in a spatially non-explicit manner (cf. Wiens et al. 1993).
Preliminary results of this model were briefly discussed
by Stenseth (1992).

The model

Assume reproduction and survival to be related to the
amount of resources available to each individual. During
the summer, individuals defend reproductive territories.
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Differences between individuals lead to a dominance
hierarchy and different abilities to defend territories. The
total amount of resources, V, is proportional to the total
area of appropriate habitat patches. Let a be the maxi-
mum number of resource units one individual can obtain,
and let m represent the maintenance cost, i.e. the number
of resource units one individual needs to survive (see
Lomnicki 1988). Let y(x) denote an individual’s resource
intake as a function of its rank, x, in the dominance
hierarchy. Let k be the number of individuals that receive
more than m units of resources. At low densities (N(z)
< V/a) each individual takes as much resources as it can,
a, and the population size in the next time step is given by
(1), where h is the efficiency with which individuals
convert consumed resources into new offspring. When
(V/a) <N(t) <(2V/a), (2V/a) — N(¢)) individuals take a
units of resources each, while the rest get a smaller share
that decreases linearly with their rank, and the population
size in the next time step is given by (2) (see Lomnicki
1988). For even higher values of N(t), high ranked (terri-
torial) individuals still get nearly the maximum possible
amount of resources, while the low ranking individuals,
competing for what is left, do not obtain enough re-
sources to reproduce nor survive. The population size in
the next time step is given by (3).
During the summer, the model is given as

[ (a-m)hN(),

| for N(t) <V/a (1
N@+D) = 3 WV —(m2a®) - mN(@)(I - (m/a)],

| for V/a <N(1) <2 V/a 2)

| WV —m/a),

L for Nt >2 Va. (3)

During winter food is scarce and individuals burn more
energy to stay warm and search for food. Let V,, and m,,
be the resource value and maintenance cost, respectively,

Table 1. Parameters in the model.

1% = Value of the resource (total) in the summer
season

a = maximum number of resource units one
individual can obtain

m = maintenance cost, i.e. resource units one
individual needs to survive in the summer

k = the number of individuals that receive more
than m units of resources

x = an individuals rank in the dominance
hierarchy

¥y(x) = an individuals resource intake as a function of
its rank, x

h = the efficiency of converting resources into
offspring

V., and m, = resource value and maintenance cost in the
wintertime: V>V, and m < m,,

c = patchiness coefficient; decreases V and V,,

increases m and m,,
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Fig. 2. The winter model. Top: the amount of resources, y(x),
available to an individual of rank x, as population size increases.
The amount of resources the population as a whole has available
for winter survival is equal to the shaded area above the dotted
line y(x) = m. The way in which resources are allocated (top)
determines the shape of the model in phase space (bottom). The
dotted line N(z+1) = N(t), may be used for cobwebbing. (Mod-
ified from Lomnicki 1988).

in the winter time, such that V,, <V and m,, >m. In the
winter, there is no breeding and individuals are assumed
to be non-territorial, i.e. all individuals are “equal” in the
winter. At low densities (N(f) <V,/a), all individuals
obtain the maximum amount of resources, and the popu-
lation size in the next time step is given by (4). Scramble
competition for available resources, when the population
size exceeds that where individuals obtain less than a
resources, yields (5). When N(z) exceeds V,/m,, all indi-
viduals obtain less than m resources and die (6).

During the winter the model is given by

[ (@-m.) hN(P), for N(t) <V,/a )
N(t+1)= 3 (Vo/N(t) = m,) NG, for V,Ja <N() <V./m,, (4)
Lo for N(t) 2V./m,, 6)

Since there is no winter reproduction, the parameters for
the winter model are constrained so that N(t+1) <N(7)
(i-e. (a-m,,) h,, < 1). The coefficient A, converts resources
in excess of m into increased winter survival.

A year is divided into ten time steps. Starting with N,
individuals, a computer program calculates the popula-
tion time series by running s time steps through the
summer model and w time steps through the winter
model (s+w=10) — before returning to the summer
model for s new time steps, and so on.

Increasing patchiness means that less of the total area
is considered appropriate habitat, so resource values are
reduced, and individuals use more energy moving be-
tween patches in search of food, territories, and/or mates.
Hence, both winter and patchiness are incorporated by
reducing the resource value and increasing the mainte-
nance cost. Let ¢ be a coefficient which modifies the
resource value and the maintenance costs with increasing
patchiness, such that V’=Ve¢, V', =V, ¢, m’=m/c, and
m’,=m,/c.

Our analysis focuses on the non-trivial equilibrium
point and its stability. If the population persists for 1200
years (1200 x 10 time steps), yet no pattern of repetition
is found, we call its dynamics “chaotic” (although many
of these populations might better be described as “quasi-
periodic”, we will not make this distinction here). Popu-
lations that crash rapidly and go extinct probably also
deserve to be called chaotic, but we simply dub them
“crashed”, and distinguish them from populations that
approach extinction asymptotically. A population is “sta-
ble” if it approaches an equilibrium population size, and

Table 2. The stability traits of the summer model depends on the population trajectory on the 3 segments of the graph in Fig. 1
(corresponding to equations (1)—(3)). The slopes and level of the three segments are dependent upon the relative magnitudes of four
points a<< << V/a, and 2 V/a (see Fig. 1), where a = h V (a-m)/a, and B = h V (a—m)*/a*. The slope of (2), which intersects the N(¢+1)

= N(z) line, is given by its first derivative, |f'((2))

= hm(a-m)/a.

Note that all four points are proportional to V. Thus, V does not

affect the summer model’s dynamic properties, and is merely a scaling parameter.

Case Constraints on « and B Constraints on | f @yl Dynamic property
1 o <2 V/a, B2V/a Stable equilibrium point
a I «@nl <1 Stable equilibrium point
2 a <2V/a, B <V/a
b lF @l >1 Chaos
a I @nl <1 Stable equlibrium point
3 o>2V/a, B =2Va
b lr@pl >1 Stable 2-cycle
4 oa>2V/a, B <V Stable cycle of arbitrary length (n-cycle)

4 OIKOS 69:1 (1994)

49



Longer winters ~———————— -

«¢— Increasingly patchy —

Fig. 3. Schematic illustration of the stability traits of the two-
season model with increasing degree of patchiness (downward)
and increasing the relative length of the winter season (towards
the right).

“cyclic” if the population size repeats itself exactly with a
period of n=2,3,4... years (each year being ten time
steps in the numerical iteration). We recognize a transi-
tion of decreasing stability from “stable” through “2-
cycle”, “4-cycle”, ... , “n-cycle”, “chaos”, “crash”, to
“asymptotically to zero”.

Results
Summer model only

The dynamics of the summer model alone can be studied
analytically, but numerical calculations were also run for
different degrees of patchiness. The winter model alone is
always unstable (has no non-trivial equilibrium), since
there is no reproduction in the winter.

The stability of the summer model depends on the
population trajectory on the 3 segments of the graph in
Fig. 1 (corresponding to equations (1)—(3)), and is sum-
marized in Table 2. If the population increases up to
segment (3), it will always return to the same point, 3 (cf.
legend to Table 2). Thus, populations whose dynamics

are determined solely by the summer model are always
persistent, because the dominance hierarchy ensures that
dominant individuals always get adequate resources. For
the non-trivial cases where a> @3, a > (V/a), and 2 V/a>
(as in Fig. 1), the stability traits of the summer model can
be shown to be as in Table 2; the quantities o and 3 are
defined in the legend to Table 2.

Two-seasonal model

The effects of increased patchiness and seasonality are
schematically summarized in Fig. 3.

Both longer winters and greater degree of resource
patchiness lead to greater instability. Table 3 shows the
results of a model where we have coupled a summer
model of case 3a (stable equilibrium) with the winter
model. Columns to the left in the table represent envi-
ronments with long summers and short winters (large s,
small w); columns to the right represent environments
with shorter summers and longer winters. Different rows
represent environments with different degrees of patchi-
ness. Patchiness increases with a decrease in the values of
¢ (downwards in the table). We see that stable popula-
tions are found in environments with relatively long sum-
mers and short winters, and low degrees of patchiness. As
winters get longer or resources are distributed more
patchily, the dynamics of the populations become in-
creasingly unstable, going progressively through bi-an-
nual and multi-annual cycles, to chaotic/quasi-periodic
behavior, crashes, and finally asymptotically towards
Zero.

Table 4 shows results of the same numerical analysis
for a different set of parameter values. By changing the
degree of patchiness (c), we can alter the summer model
through several cases for the same set of parameters (e.g.
two-cycles to n-cycles to chaos to stasis). As in the
simulations in Table 3, both longer winters and increased
patchiness increase the complexity of the dynamics and
decrease stability. Many more simulations have been
carried out with other parameter values, the results of

Table 3. Results from numerical analysis of the model, with parameter values V=250, a=2.7, m=0.5, h=1.0, V,, =200, m,. = 1.0:
h,,=0.55. Summer model corresponds to a case 3a throughout (see Table 2). Smaller values of ¢ indicate greater degrees of resource

patchiness.
c Long summer/short winter — Short summer/long winter

s=9w=1 s=8w=2 s=7w=3 s=6w=4 s=5w=5 s=4w=6 s=3w=7 s=2w=8 s=1w=9
1.0 Stable Stable Stable Stable Stable 3 year 6 year Crash Crash
0.95 Stable Stable Stable 2 year Stable Crash Crash Chaos Crash
0.90 Stable Stable Stable 2 year Crash Crash Crash Chaos Crash
0.88 Stable Stable 3 year 2 year 2 year Crash Crash Chaos Crash
0.86 Stable Stable 6 year Crash Crash 2 year Crash Stable Crash
0.84 2 year 8 year Crash Crash Crash Crash Crash Stable Crash
0.83 2 year Crash Crash Crash Crash Crash Crash Asym —0 Crash
0.82 Crash Crash Crash Crash Crash Crash Crash Asym =0 Crash
0.80 Crash Crash Crash Crash Crash Crash Crash Asym —0 Crash
0.75 Crash Crash Crash Crash Crash Crash Crash Crash Crash
50 OIKOS 69:1 (1994)



Table 4. Results from numerical analysis of the model, with parameter values V=250, a=2.9, m=1.5, h=1.429, V,, =240, m, = 1.5,
h,,=0.6. Left column indicates the kind of dynamics exhibited by the summer model alone (see Table 2). Smaller values of ¢ indicate

greater degrees of resource patchiness.

Case, c Long summer/short winter — Short summer/long winter

summer

model s=9w=1 s=8w=2 s=7w=3 s=6w=4 s=5w=5 s=4w=6 s=3w=7 s=2w=8 s=1w=9
3b 1.20  Stable 4 year Stable 4 year Stable 4 year 2 year 14 year Crash
3b 1.15 2 year 4 year 2 year Stable 2 year Crash Stable Crash Crash
3b 1.10 6 year 2 year Crash 12 year Stable Crash Stable Crash Crash

4 1.00  Stable Crash Crash Crash Crash Crash Crash Asym —0  Asym —0
2b 0.95  Stable Crash Crash Crash Crash Crash Chaos Asym =0 Asym —0
2b 0.90  Crash Crash Crash Crash Crash Chaos Asym =0 Asym -0 Asym —0
2a 0.85  Crash Crash Crash Crash Chaos Asym =0 Asym —0 Asym—0 Asym —0

which are not reproduced here. However, all display the
same general pattern.

The dynamics of the model is significantly richer than
can be seen from as crude a representation as Tables 3
and 4. Take for instance, the seventh column of Table 3
(s=4 w=06) for ¢ between 0.95 and 1.0. The population
rapidly crashes to extinction for ¢ less than 0.993984. For
¢=0.993984 the population exhibits stable 13 year cy-
cles; for ¢ =0.993985, nine year cycles; for ¢ =0.99399,
21 year cycles; ¢=0.994, 7 year cycles; ¢ =0.995, 3 year
cycles; ¢=0.999, 6 year cycles, and so on.

Winter is not inherently destabilizing as one might
expect on the basis of the winter model lacking a non-
trivial equilibrium point: an inherently cyclic summer
model may be stabilized by a short winter.

Some cases were identified in which there were two
alternative dynamic behaviors, depending upon the initial
population size. Even then, the general pattern of in-
creasingly complex dynamics with increased patchiness
and longer winters is maintained. For instance, in the
second column of Table 3 (s=9 w=1) with ¢=0.84 and
¢=0.83 the population can exhibit either chaotic dynam-
ics (as listed) or stable 2 year cycles, given another initial
population size. Similarly, the population in the sixth
column (s=5 w=35) for ¢=0.88, crashes rapidly to ex-
tinction for some other initial population sizes. The mag-
nitude of V does affect the magnitude of the peak in the
winter model (Fig. 2), and thus affects the dynamics of
the complete model.

Inspection of Table 3, and especially Table 4, shows
occasional winks back and forth in the complexity (in-
stability) of the dynamics with increasing patchiness or
longer winters, that run counter to the general pattern of
increasing complexity. These “windows”, are related to
arbitrary minutiae of how the population is passed among
the different segments of the two models, and back and
forth between the two. In the top row of Table 4
(c=1.20), for instance, the shift back and forth between
“stable” and “4 year cycles” occurs because the summer
model brings the population up to the flat section beyond
N =(2 V/a) (Fig. 1). Thus, the population is mapped back
to the same population size in the next time interval and
the same value of N is always passed to the winter model.

4% OIKOS 69:1 (1994)

An even number of iterations in the summer model (s=8,
6, 4) passes one value to the winter model, and an odd
number of iterations (s=7,5) passes another. This is
somewhat arbitrary. Considering the complexity involved
in cobwebbing s times around the summer model, passing
the result on to the winter model, cobwebbing w times in
the winter model, sending the result back to the summer
model, and so on, it is perhaps most surprising that there
is such a clear trend as there is. (Recall that a stable
population is one that returns to exactly the same size
each year (i.e. after ten iterations of the model); a two
year cycle returns the same population size after twenty
iterations, and so on).

The existence of “windows” as described above, pre-
sents a case for caution in the interpretation of field
observations, since this type of model can lead to such
complicated patterns. Even in the summer model alone, it
is possible (for example), by increasing the degree of
patchiness, to change from a set of parameter values that
yield 2 year cycles (case 3b; see Table 2), to n-cycles
(case 4), to chaos (case 2b), and from there to stasis (case
2a). Finally, the non-trivial equilibrium point is lost when
h(a-m)<1 and the population declines asymptotically to
zero (summer growth rates are insufficient to counter-
balance the decline during winter).

Discussion
Patchiness may be destabilizing

The reduced stability with increased patchiness seen in
this model runs contrary to the conventional wisdom
based on patch dynamics models (e.g. Levins 1970, At-
kinson and Shorrocks 1983, Nisbet and Gurney 1982,
Hastings 1990; see Kareiva 1990) and laboratory experi-
ments (e.g. Huffaker 1958, Pimentel et al. 1963). The
discrepancy is due to the distinction between coarse-
grained and fine-grained patchiness. The present model is
perhaps most applicable to a situation where individual
animals move frequently between local patches of re-
sources. In contrast, patch dynamics models pertain to
patches on a larger spatial scale, where patches are typ-
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ically larger than several home ranges and most indivi-
duals spend large periods of their lives within a single
patch. In most metapopulation models and patch dynamic
models, patchiness does not reduce resource availability
(e.g. Hastings 1990). It is conceivable, however, that the
present model applies generally to the effects of habitat
loss and subdivision suffered by many animals at the
hand of human beings. If this is so, we might expect the
dynamics of such populations to become increasingly
complex and erratic, and extinctions more frequent, as
natural habitat is lost and the remnants are increasingly
subdivided. In this connection, see the model by Burkey
(1989), which although it is different from ours and
incorporates a type of patchiness that is more akin to the
patch models above, shows increasing probabilities of
stochastic extinction as habitats are divided into more and
smaller patches (even without any net loss of habitat
area).

The duration of snow cover increases with latitude, but
also from coast to inland. Snow tends to melt faster on
exposed sites, producing a patchwork of freshly exposed
sites with nutritious forage which may persist for long
periods where the snow is deep. This correlates with the
tendency of microtines to cycle more in the north and
inland than in the south and coastal regions (Hansson and
Henttonen 1985).

Longer winters may be destabilizing

Changing the model parameters in the way corresponding
to moving further north, increases the model population’s
tendency to cycle. A similar result was obtained, without
incorporating patchiness, by Stenseth and Fagerstrom
(1986). This result coincides with the cyclical nature of
northern small mammal population in Fennoscandia (e.g.
Henttonen et al. 1985, Stenseth et al. 1985). Thus, longer
winters, by affecting the amount of resources available to
individuals (mediated by individual differences and terri-
toriality), is a possible explanation for why more northern
populations of microtine species are cyclical while south-
ern populations are non-cyclical. Our result is reassur-
ingly similar to that obtained by Kot and Schaffer (1984)
with a logistic map of a bivoltine population. They found
that strong seasonality was destabilizing, but that mild
seasonality could have a pronounced stabilizing effect.
The argument that increased cyclicity in the north is due
to the relatively depauperate and specialized predator
community (Hansson 1987, Henttonen 1985, Henttonen
et al. 1987, Akcakaya 1992) is very compelling. Our
argument and theirs are not mutually exclusive: For in-
stance, longer winters may have a destabilizing effect on
the prey species, that in interaction with the dynamics of
a specialized predator may produce the characteristic 3-5
year cycles found in many northern microtine popula-
tions.

The frequently occurring deterministic population
crashes seen in Tables 3 and 4 would probably be re-
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placed by cycles or persistent chaos if the model’s as-
sumptions were relaxed. These crashes are partly due to
our modeling the population as a closed system without
dispersal and recolonization, and partly due to the strict
assumption that absolutely no individuals survive the
winter if N at the end of summer exceeds V,/m,, (see Fig.
2). With such high population sizes at the end of the
summer, the winter model maps the population trajectory
directly to zero. Allowing some small differences be-
tween individuals in the ability to obtain food and survive
during winter, or recolonization from outside, would in-
stead lead to persistent cycles or quasi-periodicity. This
would accentuate the dichotomy between stable popula-
tions in areas with relatively short winters and low degree
of patchiness and cyclic populations in areas with rela-
tively long winters and high degree of patchiness.

Although we have cast the seasonality in terms of
winter and summer, the model may also apply to other
types of seasonality, such as dry and wet seasons in the
tropics.

Conclusion

The model demonstrates one way in which the longer
winters in the north may be responsible for the propensity
of many mammal populations to cycle at northern latitu-
des. Furthermore, deeper snow cover may increase the
patchiness of resources throughout the spring and sum-
mer, as bare patches of vegetation are gradually exposed
following snow melt on exposed sites (cf. Hansson and
Henttonen 1985). A complete explanation of the Fen-
noscandian rodent cycles will undoubtedly be many-
faceted and incorporate several different mechanisms
(Stenseth and Ims 1993), but we think that this model
may contribute to an increased understanding of the phe-
nomenon and be profitably incorporated into a more
comprehensive theory of small mammal dynamics.

A frequently mentioned and influential damper on the
appeal of chaos theory in population dynamics, has been
the claim that the population growth rate necessary to get
chaos is so high that chaos seldom, if ever, will be
observed in natural populations (e.g. Hassell et al. 1976;
but see Turchin and Taylor 1992). In the present model,
chaotic dynamics are encountered frequently, at quite
“reasonable” parameter values. By coupling two simple
models for a territorial species we have substantially
lowered the threshold for chaotic dynamics. Both Table 3
and Table 4 seem to indicate, however, that the regions of
parameter space wherein the population exhibits per-
sistent chaotic dynamics (i.e. without going extinct) are
relatively narrow. Populations in the chaotic domain typ-
ically crash to extinction quickly. Such populations
would of course be difficult to observe in the field unless
there were frequent recolonizations.

OIKOS 69:1 (1994)
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